Stable surfaces with constant anisotropic mean curvature and circular boundary

By Miyuki Koiso and Bennett Palmer

Abstract

We show that, for an axially symmetric anisotropic surface energy, only stable disc-type surfaces with constant anisotropic mean curvature bounded by a circle which lies in a plane orthogonal to the rotation axis of the Wulff shape are rescalings of parts of the Wulff shape and the flat disc.

1 Introduction

We begin with a question. If we are given a variational problem for surfaces with boundary and the variational problem and the boundary of a critical surface admit the same symmetry, must the critical surface be symmetric? In [1] it was shown that, in the case where the functional is the area, any stable constant mean curvature immersion of a (topological) disc, which is bounded by a round circle, is necessarily axially symmetric and is hence a spherical cap or a flat disc. It is worth noting that earlier, the first author, [6], obtained the same conclusion under the assumption that the surface is an absolute minimizer of the volume constrained boundary value problem. Also, Kapouleas [5] has produced examples of higher genus constant mean curvature surfaces bounded by a circle, although little is known about their stability. For more than one boundary component, Patnaik [11] has produced a remarkable example of a non axially symmetric minimizer for the volume constrained Plateau problem where the boundary is prescribed to be two co-axial circles. In this paper, we obtain an extension of the result of [1] to the case of constant anisotropic mean curvature.

Let \(\gamma : S^2 \to \mathbb{R}^+ \) be a positive smooth function on the unit sphere \(S^2 \subset \mathbb{R}^3 \). We consider \(\gamma \) as an anisotropic surface density. This means that \(\gamma(\nu) \) gives the unit energy per unit area of a surface element having normal \(\nu \). The (anisotropic surface) energy of a surface \(\Sigma \) is thus

\[F = \int_{\Sigma} \gamma(\nu) \, d\Sigma. \]

The first author is partially supported by Grant-in-Aid for Challenging Exploratory Research No. 22654009 of the Japan Society for the Promotion of Science.
There is a canonical closed convex surface associated with F, known as the Wulff shape which is defined by

$$W = \partial \bigcap_{n \in S^2} \{ Y \in \mathbb{R}^3 : Y \cdot n \leq \gamma(n) \}.$$

The surface W is the absolute minimizer of F among all closed surfaces which enclose the same three dimensional volume as W. In this paper, we will assume a convexity condition that W is a smooth strictly convex surface. In particular, its curvature K_W is everywhere positive.

Now let $X : \Sigma \to \mathbb{R}^3$ be a sufficiently smooth, oriented surface. If $X_\epsilon := X + \epsilon \dot{X} + \ldots$ is a compactly supported variation of X, then the first variation formula

$$\delta F := \partial_\epsilon F(X_\epsilon)_{\epsilon=0} = - \int_\Sigma \Lambda \dot{X} \cdot \nu \, d\Sigma$$

defines the anisotropic mean curvature Λ (cf. [9]). The equation $\Lambda \equiv \text{constant}$ characterizes volume constrained equilibria of F.

A surface with constant anisotropic mean curvature is said to be stable if the second variation of the anisotropic surface energy F is non-negative for all compactly supported variations of the surface which fix the enclosed oriented three-volume.

Theorem 1.1 Let F be a convex anisotropic energy with axially symmetric Wulff shape W. Denote by D the unit disc in \mathbb{R}^2. Let S^1 be a round circle which lies in a plane orthogonal to the rotation axis of W. Let $X : (D, \partial D) \to (\mathbb{R}^3, S^1)$ be an immersion of a stable surface with constant anisotropic mean curvature. Then $X(D) \subset rW$ for some $r > 0$ or $X(D)$ is a flat disc.

2 Preliminaries

We assume that $\gamma(\nu)$ is a convex anisotropic energy density. Let $\chi : S^2 \to \mathbb{R}^3$ be the embedding such that $\chi(S^2) = W$ and χ^{-1} coincides with the Gauss map of W. If $\Sigma \to \mathbb{R}^3$ is an immersed surface with Gauss map $\nu : \Sigma \to S^2$, then $\xi = \chi \circ \nu$ is the Cahn-Hoffman field [3], which may be thought of as an anisotropic Gauss map. Since $T_{\xi(p)}W = T_p\Sigma$, we can consider $d\xi_p$ as a linear map of $T_p\Sigma$ to itself. Unlike the isotropic case, this map is not necessarily self-adjoint.

Let $\tilde{\gamma} : \mathbb{R}^3 - \{0\} \to \mathbb{R}^+$ denote the positive degree one homogeneous extension of γ, i.e. $\tilde{\gamma}(Y) = |Y| \gamma(|Y|/|Y|)$. The Cahn-Hoffman field ξ can be computed by [2],

$$\xi_p = (\nabla \tilde{\gamma}(\nu))_p,$$

and the anisotropic mean curvature is given by

$$\Lambda = -(\text{div} \xi(\nu))_p.$$
We work locally on Σ and choose a complex coordinate so that the induced metric has the form $ds^2 = e^{\varphi}|dz|^2$. We write
\begin{align*}
\xi_z = -\eta X_z - \beta e^{-\mu} X \bar{z}, \quad \bar{\xi}_z = -\bar{\eta} X \bar{z} - \bar{\beta} e^{-\mu} X \bar{z}
\end{align*}
(1)
and
\begin{align*}
\Xi := -d\xi \cdot dX =: 2\Re\left\{\frac{\beta}{2} dz^2 + \frac{\eta}{2} e^{\mu} d\bar{z} \bar{d}z\right\}.
\end{align*}
(2)
The quantity η is called the complex anisotropic mean curvature ([7]) and it is given by
\begin{equation*}
\eta = \frac{\Lambda}{2} + \frac{\Gamma}{2}.
\end{equation*}
Here $\Gamma := \text{trace}_\Sigma (d\xi \circ J)$, where J is the almost complex structure, i.e. $JX_z = iX_{\bar{z}}$. The form Ξ is symmetric if and only if $\Gamma \equiv 0$. For example, $\Gamma \equiv 0$ always holds in the isotropic case and it holds if both W and Σ are axially symmetric with the same rotation axis. However, if W is axially symmetric but not a sphere and X is an immersion of a helicoid, then $\Lambda \equiv 0$ holds but Γ is non zero on Σ, [8].

The points on Σ where $d\xi_p = (\Lambda/2) dX_p$ are called anisotropic umbilics (A-umbilics).

Lemma 2.1 Let $X : \Sigma \rightarrow \mathbb{R}^3$ be an immersion with constant anisotropic mean curvature. Then the following are equivalent:

(i) $p \in \Sigma$ is an A-umbilic.
(ii) $\beta(p) = 0$.
(iii) $(\Lambda^2 - 4K_\Sigma/K_W)(p) = 0$.

Proof. From (1), it is clear that a point $p \in \Sigma$ is an A-umbilic if and only if $\beta(p) = \Gamma(p) = 0$. However, below we will show that $\beta(p) = 0$ implies $\Gamma(p) = 0$. Therefore, (i) and (ii) are equivalent.

Let $\{e_j\}_{j=1}^2$ be a positively oriented orthonormal basis for the tangent space at p which diagonalizes $d\chi_{\nu}(p)$, i.e. $d\chi_{\nu(p)}(e_j) = (1/\mu_j)e_j$. This is possible since $d\chi = D^2\gamma + \gamma I$ where $D^2\gamma$ denotes the Hessian of γ on S^2. Note that μ_j are positive, because the Wulff shape is strictly convex. Let $(-\sigma_{ij})$ be the matrix representation of $d\nu_p$ with respect to this basis. It is straightforward to check that:

\begin{equation*}
\Lambda = \frac{\sigma_{11}}{\mu_1} + \frac{\sigma_{22}}{\mu_2}, \quad \Gamma = \sigma_{12}\left(\frac{-1}{\mu_1} + \frac{1}{\mu_2}\right), \quad K_\Sigma/K_W = \frac{\sigma_{11}\sigma_{22} - \sigma_{12}^2}{\mu_1\mu_2}.
\end{equation*}

If z is a complex coordinate near p with $z(p) = 0$, then there exists an angle θ such that at $z = 0$, $e^{-\mu/2} X_z = (1/2)e^{i\theta}(e_1 - ie_2)$. We compute at p:
\begin{align*}
-\frac{\beta}{2} e^{-\mu} &= e^{-\mu} d\xi(X_z) \cdot X_z \\
&= \frac{e^{2i\theta}}{4} d\chi d\nu (e_1 - ie_2) \cdot (e_1 - ie_2)
\end{align*}
\[
\begin{align*}
&= -e^{2i\theta} \left[\frac{\sigma_{11}}{\mu_1} e_1 + \frac{\sigma_{12}}{\mu_2} e_2 - i \left(\frac{\sigma_{12}}{\mu_1} e_1 + \frac{\sigma_{22}}{\mu_2} e_2 \right) \right] \cdot (e_1 - ie_2) \\
&= -e^{2i\theta} \left(\frac{\sigma_{11}}{\mu_1} - \frac{\sigma_{22}}{\mu_2} - i \sigma_{12} \left(\frac{1}{\mu_1} + \frac{1}{\mu_2} \right) \right),
\end{align*}
\]

\[
4|\beta|^2 e^{-2\mu} = \left(\frac{\sigma_{11}}{\mu_1} - \frac{\sigma_{22}}{\mu_2} \right)^2 + \frac{\sigma_{12}^2}{\mu_1 \mu_2} + \frac{4\sigma_{12}^2}{\mu_1 \mu_2} + \frac{\sigma_{12}^2}{\mu_1} - \frac{1}{\mu_2}^2
\]

\[
= (\Lambda^2 - 4 \frac{K \Sigma}{K W} + \Gamma^2) .
\]

Since
\[
\Lambda^2 - 4 \frac{K \Sigma}{K W} = \left(\frac{\sigma_{11}}{\mu_1} - \frac{\sigma_{22}}{\mu_2} \right)^2 + \frac{4\sigma_{12}^2}{\mu_1 \mu_2} \geq 0
\]

holds, \(\beta(p) = 0 \) implies \(\Gamma(p) = 0 \). Moreover, one sees that (ii) and (iii) are equivalent. q.e.d.

Proposition 2.1 Let \(X : \Sigma \to \mathbb{R}^3 \) be an immersion with constant anisotropic mean curvature. If the immersion is not totally anisotropic umbilic, then the anisotropic umbilic points are isolated. If \(p \) is an anisotropic umbilic and \(C \) is a sufficiently small closed curve around \(p \), then \(\text{Var}_C(\text{arg} \beta) := \text{the total variation of \text{arg} \beta over } C \) is equal to twice the negative of the winding number of the anisotropic principal direction fields around \(C \). In particular, \(\text{Var}_C(\text{arg} \beta) > 0 \) holds.

Proof. Let \(v := aX_z + \bar{a}X_{\bar{z}} \neq 0 \) be a tangent vector. We obtain from (1),
\[
d\xi(v) = -2\Re\{a\eta + \bar{a}\beta e^{-\mu}X_z\}, \quad Jv = 2\Re\{iaX_z\}.
\]

The condition for \(v \) to be an anisotropic principal direction is that \(d\xi v \cdot Jv = 0 \) holds. This is the same as
\[
\Re\{ia[\bar{a}\eta + a\beta e^{-\mu}]e^\mu\} = 0,
\]

which gives, using the definition of \(\eta \),
\[
|a|^2 \frac{\Gamma}{2} e^\mu - \Im\{a^2 \beta\} = 0.
\]

(This agrees with the well known condition \(\Im\{a^2 \Phi\} = 0 \) in the isotropic case, where \(\Phi \) is the Hopf differential.)

Let \(p \) be an A-umbilic and let \(C \) be a positively oriented curve around \(p \) which does not contain or pass through any other A-umbilic. This is possible since it was shown in [10] that the A-umbilic points are isolated. We assume
that v now represents a vector in a continuous anisotropic direction field along C. Write $a = |a|e^{i\vartheta}$, $\beta = |\beta|e^{i\vartheta}$. We can write the previous equation as
\[
\sin(\vartheta + 2\theta) = \frac{\Gamma e^\mu}{2|\beta|} = \frac{\Gamma}{\sqrt{\Lambda^2 - 4(K_\Sigma/K_W)^2 + \Gamma^2}} < 1,
\]
by the lemma and the assumption that C contains no A-umbilics. Note that the first equality in (4) is the same as
\[
\vartheta + 2\theta - \arcsin\left(\frac{\Gamma e^\mu}{2|\beta|}\right) = 0.
\]
However the last term on the left is a well defined continuous function along C, so its variation over C vanishes and we get
\[
\text{Var}_C \vartheta = -2\text{Var}_C \theta.
\]
Since it was shown in [10] that the winding number of the direction fields around an A-umbilic is negative, this completes the proof. q.e.d

\[\text{Corollary 2.1} \text{ Let } \tilde{\Xi} \text{ denote the symmetrization of } \Xi, \text{ i.e. } \tilde{\Xi}(u,v) = (1/2)(\Xi(u,v) + \Xi(v,u), \text{ and let } T \text{ be an eigendirection of } \tilde{\Xi}. \text{ Then the singularities of } T \text{ are exactly the A-umbilic points and the winding number of } T \text{ around any A-umbilic is equal to } -(1/2)\text{Var}_C \arg \beta, \text{ where } C \text{ is as above.}
\]

\[\text{Proof. From (2) and (3), it is seen that the singularities of } T \text{ are exactly the A-umbilic points. The last statement is proved in the same way as the Proposition except that now the } \Gamma \text{ term is missing. q.e.d}
\]

\section{Proof of Theorem 1.1}

Let $X : (D, \partial D) \to (\mathbb{R}^3, S^1)$ be an immersion with constant anisotropic mean curvature Λ. If we consider a smooth variation field $\dot{X} = u\nu + T$ where T is tangent to the immersion, then the pointwise variation of Λ is given by, [9]
\[
\dot{\Lambda} = \frac{1}{2} J[u],
\]
where J is the Jacobi operator of the immersion. This operator is given by
\[
J[u] = \text{div}[(D^2\gamma + \gamma I)\nabla u] + \langle(D^2\gamma + \gamma I) d\nu, d\nu\rangle u.
\]
The endomorphism $(D^2\gamma + \gamma I)$ is positive definite at each point; this is just the convexity condition for the Wulff shape W. It follows that J is elliptic and self-adjoint.

The second variation of \mathcal{F} for a volume-preserving variation which fixes the boundary with X as variation vector field is $I[u] := -\int_D u J[u] \, d\Sigma$, where $d\Sigma$ is the area element of X. Denote by λ_j the jth eigenvalue of the Dirichlet
eigenvalue problem for J. If $\lambda_2 < 0$, then a suitable linear combination f of eigenfunctions of λ_1, λ_2 satisfies
\[
f|_{\partial D} = 0, \quad I[f] < 0, \quad \int_D f \, d\Sigma = 0.
\]
One obtain a volume-preserving variation of X which fixes the boundary with variation vector field $f\nu$. Hence X is unstable.

Proof of Theorem 1.1. The proof closely follows the proof of the result in [1]. As in [1] we consider the variation of X given by
\[
X_\epsilon := \sigma_\epsilon X = X + \epsilon E_3 \times X + O(\epsilon^2), \quad E_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad \sigma_\epsilon = \begin{pmatrix} \cos \epsilon & -\sin \epsilon & 0 \\ \sin \epsilon & \cos \epsilon & 0 \\ 0 & 0 & 1 \end{pmatrix}.
\]
This is just a one parameter family of rotations with vertical axis applied to X. Therefore, if $\psi := E_3 \times X \cdot \nu$, then $J[\psi] = 0$ by (5) and $\psi|_{\partial D} \equiv 0$, since the boundary is set-wise fixed by the variation.

We will show that ψ is identically zero. We first assume that ψ is not identically zero, and we will show that $D \setminus \{\psi = 0\}$ has at least three components. (In fact if there are three components, then there must be four). If this is true, then ψ is an eigenfunction belonging to some $\lambda_j = 0$ with $j \geq 3$ by the Courant’s Nodal Domain Theorem. Hence, X is unstable by the above remark.

We compute
\[
\frac{1}{\mu_1} + \frac{1}{\mu_2} \partial_n \psi = 2e^{-\mu} \mathfrak{N}\{z^2\beta\}, \quad (6)
\]
where n is the outward pointing unit normal along ∂D. The equality (6) will be proved in §4. It is enough to show that $\partial_n \psi$ has at least three zeros on ∂D, since at each of the zeros, a branch of the nodal set must enter into D by the Hopf maximum principle ([4]). To do this, we consider $\text{Var}_{S^1}(\arg(z^2\beta)) = 4\pi + \text{Var}_{S^1}(\arg \beta)$. It is enough to show that $\text{Var}_{S^1}(\arg \beta) \geq 0$ holds, since then $\mathfrak{N}\{z^2\beta\}$ must have at least three zeros.

First assume that there are no A-umbilics on ∂D. By the corollary and general facts about indices of direction fields, $\text{Var}_{S^1}(\arg \beta)$ is equal to -2 times the sum of the indices of a direction field of $\tilde{\mathcal{E}}$ in D. This is clearly non negative.

The case where there are A-umbilics on ∂D is handled by the usual type of indentation argument. For each A-umbilic point of the boundary, $\text{Var}_{S^1}(\arg \beta)$ is incremented by minus the winding number of a direction field of $\tilde{\mathcal{E}}$ around such a point, so again $\text{Var}_{S^1}(\arg \beta)$ is non negative.

Since the assumption that ψ is not identically zero implies that the surface is unstable, we can conclude that $\psi \equiv 0$ holds. From this it follows that the immersion X is axially symmetric. However, axially symmetric surfaces with constant anisotropic mean curvature are classified ([9]), and the only ones of disc type are either subsets of rW, in the case $\Lambda = -2/r$ or they are flat discs in the case $\Lambda = 0$. The former are known to be stable, in fact minimizing, by a result known as Winterbottom’s Theorem, [12], and it is easy to show that planer surfaces are also stable. q.e.d.
4 Appendix

We will prove (6). Let $z = x + iy$ be the usual coordinate in the disc and let $\zeta = \log z = \log r + i\theta$ in $D \setminus \{0\}$. Then using that $r \equiv 1$ on ∂D, we have

$$\frac{1}{2}(X_r - iX_\theta) = X_\zeta = zX_z, \quad \frac{1}{2}(X_r + iX_\theta) = X_{\bar{\zeta}} = \bar{z}X_{\bar{z}}.$$

If n, t denote the unit conormal and tangent to ∂D, we have

$$n = e^{-\mu/2}X_r = e^{-\mu/2}(zX_z + \bar{z}X_{\bar{z}}), \quad t = e^{-\mu/2}X_\theta = e^{-\mu/2}(izX_z - i\bar{z}X_{\bar{z}}).$$

We then obtain from (1),

$$d\xi(t) \cdot n + d\xi(n) \cdot t = 2e^{-\mu} \Im\{z^2\beta\}. \quad (7)$$

Next note that since the surface is bounded by a circle, both n and t are principal directions of W. Specifically we have

$$d\chi(n) = \frac{1}{\mu_1} n, \quad d\chi(t) = \frac{1}{\mu_2} t,$$

Let $(-\sigma_{ij})$ denote the matrix representing $d\nu$ with respect to the basis $\{n, t\}$, we easily obtain, using $d\xi = d\chi \circ d\nu$,

$$d\xi(t) \cdot n + d\xi(n) \cdot t = -(\frac{1}{\mu_1} + \frac{1}{\mu_2}) \sigma_{12}. \quad (8)$$

Finally, we compute

$$\partial_n \psi = \partial_n(E_3 \times X \cdot \nu) = (E_3 \times n) \cdot \nu + (E_3 \times X) \cdot d\nu(n) = t \cdot d\nu(n) = -\sigma_{12}.$$

This with (7), (8) implies (6). \textbf{q.e.d.}

References

Miyuki KOISO
Institute of Mathematics for Industry
Kyushu University & PRESTO, JST
744 Motooka, Nishi-ku
Fukuoka 819-0395, Japan
E-mail: koiso@math.kyushu-u.ac.jp

Bennett PALMER
Department of Mathematics
Idaho State University
Pocatello, ID 83209
U.S.A.
E-mail: palmbenn@isu.edu