The following text is not legible and cannot be transcribed accurately into a readable format.
A. The weight in grams of 2.4 liters of nitroglycerine is
B. The weight in grams of 2.4 liters of nitroglycerine is

22. Of the following, an example of a transition element is
A. Palladium
B. Mercury
C. Gold
D. Silver

23. The outer electron is most closely related to which one of the
A. 6 B. 7 C. 8 D. 9

21. In nitric acid, the oxidation number of nitric is
A. +1 B. +3 C. +5 D. +7

20. The gas evolved when hydrochloric acid is added to a chalk containing
A. 2 B. 8 C. 5 D. 4

19. The outer electron is most closely related to which one of the
A. 6 B. 7 C. 8 D. 9

18. In nitric acid, the oxidation number of nitric is
A. +1 B. +3 C. +5 D. +7

17. The weight in grams of 2.4 liters of nitroglycerine is
A. 22.2 B. 22.4 C. 22.6 D. 22.8

16. A. The weight in grams of 2.4 liters of nitroglycerine is
B. The weight in grams of 2.4 liters of nitroglycerine is
C. The weight in grams of 2.4 liters of nitroglycerine is
D. The weight in grams of 2.4 liters of nitroglycerine is

15. A. The weight in grams of 2.4 liters of nitroglycerine is
B. The weight in grams of 2.4 liters of nitroglycerine is
C. The weight in grams of 2.4 liters of nitroglycerine is
D. The weight in grams of 2.4 liters of nitroglycerine is

14. A. The weight in grams of 2.4 liters of nitroglycerine is
B. The weight in grams of 2.4 liters of nitroglycerine is
C. The weight in grams of 2.4 liters of nitroglycerine is
D. The weight in grams of 2.4 liters of nitroglycerine is

13. A. The weight in grams of 2.4 liters of nitroglycerine is
B. The weight in grams of 2.4 liters of nitroglycerine is
C. The weight in grams of 2.4 liters of nitroglycerine is
D. The weight in grams of 2.4 liters of nitroglycerine is

12. A. The weight in grams of 2.4 liters of nitroglycerine is
B. The weight in grams of 2.4 liters of nitroglycerine is
C. The weight in grams of 2.4 liters of nitroglycerine is
D. The weight in grams of 2.4 liters of nitroglycerine is

11. A. The weight in grams of 2.4 liters of nitroglycerine is
B. The weight in grams of 2.4 liters of nitroglycerine is
C. The weight in grams of 2.4 liters of nitroglycerine is
D. The weight in grams of 2.4 liters of nitroglycerine is

10. A. The weight in grams of 2.4 liters of nitroglycerine is
B. The weight in grams of 2.4 liters of nitroglycerine is
C. The weight in grams of 2.4 liters of nitroglycerine is
D. The weight in grams of 2.4 liters of nitroglycerine is

9. A. The weight in grams of 2.4 liters of nitroglycerine is
B. The weight in grams of 2.4 liters of nitroglycerine is
C. The weight in grams of 2.4 liters of nitroglycerine is
D. The weight in grams of 2.4 liters of nitroglycerine is

8. A. The weight in grams of 2.4 liters of nitroglycerine is
B. The weight in grams of 2.4 liters of nitroglycerine is
C. The weight in grams of 2.4 liters of nitroglycerine is
D. The weight in grams of 2.4 liters of nitroglycerine is

7. A. The weight in grams of 2.4 liters of nitroglycerine is
B. The weight in grams of 2.4 liters of nitroglycerine is
C. The weight in grams of 2.4 liters of nitroglycerine is
D. The weight in grams of 2.4 liters of nitroglycerine is

6. A. The weight in grams of 2.4 liters of nitroglycerine is
B. The weight in grams of 2.4 liters of nitroglycerine is
C. The weight in grams of 2.4 liters of nitroglycerine is
D. The weight in grams of 2.4 liters of nitroglycerine is

5. A. The weight in grams of 2.4 liters of nitroglycerine is
B. The weight in grams of 2.4 liters of nitroglycerine is
C. The weight in grams of 2.4 liters of nitroglycerine is
D. The weight in grams of 2.4 liters of nitroglycerine is

4. A. The weight in grams of 2.4 liters of nitroglycerine is
B. The weight in grams of 2.4 liters of nitroglycerine is
C. The weight in grams of 2.4 liters of nitroglycerine is
D. The weight in grams of 2.4 liters of nitroglycerine is

3. A. The weight in grams of 2.4 liters of nitroglycerine is
B. The weight in grams of 2.4 liters of nitroglycerine is
C. The weight in grams of 2.4 liters of nitroglycerine is
D. The weight in grams of 2.4 liters of nitroglycerine is

2. A. The weight in grams of 2.4 liters of nitroglycerine is
B. The weight in grams of 2.4 liters of nitroglycerine is
C. The weight in grams of 2.4 liters of nitroglycerine is
D. The weight in grams of 2.4 liters of nitroglycerine is

1. A. The weight in grams of 2.4 liters of nitroglycerine is
B. The weight in grams of 2.4 liters of nitroglycerine is
C. The weight in grams of 2.4 liters of nitroglycerine is
D. The weight in grams of 2.4 liters of nitroglycerine is
The following boiling point is shown most strongly in which one of the following:

- Methanol
- Acetone
- Ether
- Chloroform

The electric Finding the current Belding, which one of the following statements best describes the family of

- pH
- 1, 2, 3
- 0, 1, 2
- 0, 1, 2
- 1, 2, 3

The following solution whose water solution shows the highest acid strength:

- HCl
- HF
- HBr
- HI

The following compound. The one that is most soluble in water is:

- NaCl
- NaOH
- HCl
- HNO

The following compounds, the correct formula for each acid is:

- HCl
- NaCl
- H2CO3
- H2SO4

The following reaction will occur. The correct reaction is:

\[\text{Fe} + \text{CuSO}_4 \rightarrow \text{FeSO}_4 + \text{Cu} \]

In the following reaction, FeCO3 + OH- + CO2 + H2O

\[\text{FeCO}_3 + \text{2OH}^- + \text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{Fe}^{2+} + 3\text{HCO}_3^- \]

The following reaction is a hydrolysis of kaolinite (Ca(OH)2): 12, 10, 8, 6, 4

The following reaction is a hydrolysis of 32% acetic acid in 48% water.

\[\text{CH}_3\text{COOH} + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{COO}^- + \text{H}_3\text{O}^+ \]

The following acids are all polar with a relative boiling point of

- HBr
- H2SO4
- HNO3

The molar mass of a gas is equal to the molar volume of 1 molar at STP.

\[\text{MW} = \frac{\text{molar volume of gas}}{\text{mol}} \]

The molar mass of a gas is equal to the molar volume of 1 molar at STP.

\[\text{MW} = \frac{\text{molar volume of gas}}{\text{mol}} \]